
Results: •Combining E-step and M-step reduces memory usage but increases running time.
•Parallelization decreases running time, with more predictable behavior for executations on a single computer (perhaps due to the network overhead).

cran

CPUs

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e
(s

)

1 2 3 4

50
10

0
15

0
20

0

cisi

CPUs

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e
(s

)

1 2 3 4

50
10

0
15

0
20

0
25

0

med

CPUs

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e
(s

)

1 2 3 4

50
10

0
15

0
20

0

cacm

CPUs

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e
(s

)

1 2 3 4

50
20

0
35

0
50

0
65

0

Baseline
None

OpenMP
MPI

All

cran

CPUs

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e
(s

)

1 2 3 4 5 6 7 8

50
10

0
15

0
20

0

cisi

CPUs

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e
(s

)

1 2 3 4 5 6 7 8

50
10

0
15

0
20

0
25

0

med

CPUs

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e
(s

)

1 2 3 4 5 6 7 8

50
10

0
15

0
20

0

cacm

CPUs

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e
(s

)

1 2 3 4 5 6 7 8

50
20

0
35

0
50

0
65

0

Baseline
None

MPI
All

(a) Single computer (b) Network of 8 computers

Future Work
Our next step is to extend our evaluation to larger data sets (ideally, TREC collec-
tions) and to combine our work with other existing techniques that will change the
output of PLSA (e.g., vocabulary reduction).

Source code: http://www.cbrc.jp/˜rwan/

Related Work
Hong et al. [2008] only
considered OpenMP
and also:

Hong et al. [2008]:

D

W
Z

Our work:

W
Z

D

Parallelization
We distribute the computation of the EM algorithm across
multiple CPUs using two paradigms: shared or distributed
memory.

• shared memory – uses the cores of a single computer
• distributed memory – uses one or more cores on multiple

computers within a network

Shared Distributed
Machines Single CPU Multiple CPU
Network N/A Possible
Granularity Fine (loop-level) Coarse (function-level)
Data structures Shared Explicitly transmitted
Disk access Competing Separate
Standard OpenMP MPI
API OpenMP Open MPI

Methods Considered

•Only keep the non-zero co-occurrence counts.
•Combine the E-step and M-steps (see below).
• Incorporate either or both shared (OpenMP) and distributed (MPI) memory par-

allelization (see right panel).

Combining the E-step and M-step removes the largest data structure (p(z|w, d)):

E-step p(z|w, d) ∝ p(d|z)p(w|z)p(z)
M-step p(w|z) ∝ ∑

d∈D n(w, d)p(z|w, d)
p(d|z) ∝ ∑

w∈W n(w, d)p(z|w, d)
p(z) ∝ ∑

d∈D
∑

w∈W n(w, d)p(z|w, d)

E-step + M-step p(new)(w|z) ∝ ∑
d∈D n(w, d)p(d|z)p(w|z)p(z)

p(w,d)

p(new)(d|z) ∝ ∑
w∈W n(w, d)p(d|z)p(w|z)p(z)

p(w,d)

p(new)(z) ∝ ∑
d∈D

∑
w∈W n(w, d)p(d|z)p(w|z)p(z)

p(w,d)

where p(w, d) =
∑

z∈Z p(d|z)p(w|z)p(z)

We performed experiments with the following combinations and data sets:

Baseline None OpenMP MPI All |W | |D|
Non-zero counts Yes Yes Yes Yes Yes CRAN 7,479 1,398
Combine EM No Yes Yes Yes Yes CISI 9,814 1,460
Open MP No No Yes No Yes (4) MED 10,673 1,033
MPI No No No Yes Yes CACM 12,195 3,204

Background of PLSA

•Associates two types of data through a set of Z latent (hidden) states.
• In IR, these two data types could be the set of words W and documents D.
• Input: a co-occurrence matrix of size |W | × |D|.
•Output: joint probability across Z latent states:

p(w, d) =
∑
z∈Z

p(d|z)p(w|z)p(z) . (1)

•Parameters of the above obtained from the Expectation-Maximization (EM) algo-
rithm which iterates between the E-step and M-step.

Abstract
Probabilistic latent semantic analysis (PLSA) is an effective technique for IR, but
has one drawback: its dramatic consumption of both execution time and memory.
In this work, we improve the efficiency of PLSA without changing its output by:

1) re-evaluating the data structures used,
2) modifying how the EM algorithm is implemented, and
3) incorporating both shared and distributed memory parallelization.

We evaluate our system on several text collections commonly used in the litera-
ture.

Efficient Probabilistic Latent Semantic

Analysis Through Parallelization
Raymond Wan1,3 Vo Ngoc Anh2 Hiroshi Mamitsuka1

r.wan@aist.go.jp vo@csse.unimelb.edu.au mami@kuicr.kyoto-u.ac.jp

1 Bioinformatics Center, Institute for Chemical Research,
Kyoto University, Gokasho, Uji, 611-0011, Japan

2 Department of Computer Science and Software Engineering, Faculty of Engineering,
University of Melbourne, Victoria, 3010, Australia

3 Computational Biology Research Center, AIST, 2-42, Aomi, Koto-ku, Tokyo, 135-0064, Japan

The 5th Asia Information Retrieval Symposium (AIRS 2009), October 21-23, 2009, Sapporo, Hokkaido, Japan

