## Efficient Probabilistic Latent Semantic

# **Analysis Through Parallelization**



Vo Ngoc Anh<sup>2</sup>

Hiroshi Mamitsuka<sup>1</sup>

r.wan@aist.go.jp

vo@csse.unimelb.edu.au

mami@kuicr.kyoto-u.ac.jp



- <sup>1</sup> Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011, Japan
- <sup>2</sup> Department of Computer Science and Software Engineering, Faculty of Engineering, University of Melbourne, Victoria, 3010, Australia
- <sup>3</sup> Computational Biology Research Center, AIST, 2-42, Aomi, Koto-ku, Tokyo, 135-0064, Japan

#### **Abstract**

Probabilistic latent semantic analysis (PLSA) is an effective technique for IR, but has one drawback: its dramatic consumption of both execution time and memory. In this work, we improve the efficiency of PLSA without changing its output by:

1) re-evaluating the data structures used,

CBRC

- 2) modifying how the EM algorithm is implemented, and
- 3) incorporating both shared and distributed memory parallelization.

We evaluate our system on several text collections commonly used in the literature.

### **Background of PLSA**

- ullet Associates two types of data through a set of Z latent (hidden) states.
- ullet In IR, these two data types could be the set of words W and documents D.
- Input: a co-occurrence matrix of size  $|W| \times |D|$ .
- ullet Output: joint probability across Z latent states:

$$p(w,d) = \sum_{z \in Z} p(d|z)p(w|z)p(z). \tag{1}$$

• Parameters of the above obtained from the Expectation-Maximization (EM) algorithm which iterates between the **E-step** and **M-step**.

#### **Methods Considered**

- Only keep the non-zero co-occurrence counts.
- Combine the E-step and M-steps (see below).
- Incorporate either or both shared (OpenMP) and distributed (MPI) memory parallelization (see right panel).

Combining the E-step and M-step removes the largest data structure (p(z|w,d)):

| E-step | p(z w,d) | $\propto p(d z)p(w z)p(z)$                                |
|--------|----------|-----------------------------------------------------------|
| M-step | p(w z)   | $\propto \sum_{d \in D} n(w, d) p(z w, d)$                |
|        | p(d z)   | $\propto \sum_{w \in W} n(w, d) p(z w, d)$                |
|        | p(z)     | $\propto \sum_{d \in D} \sum_{w \in W} n(w, d) p(z w, d)$ |
|        |          |                                                           |

E-step + M-step  $p^{(new)}(w|z) \propto \sum_{d \in D} n(w,d) \frac{p(d|z)p(w|z)p(z)}{p(w,d)}$   $p^{(new)}(d|z) \propto \sum_{w \in W} n(w,d) \frac{p(d|z)p(w|z)p(z)}{p(w,d)}$ 

 $p^{(new)}(z)$   $\propto \sum_{d \in D} \sum_{w \in W} n(w,d) \frac{p(d|z)p(w|z)p(z)}{p(w,d)}$  where  $p(w,d) = \sum_{z \in Z} p(d|z)p(w|z)p(z)$ 

We performed experiments with the following combinations and data sets:

|                 | Baseline | None | OpenMP | MPI | All     |      | W      | $\overline{ D }$ |
|-----------------|----------|------|--------|-----|---------|------|--------|------------------|
| Non-zero counts | Yes      | Yes  | Yes    | Yes | Yes     | CRAN | 7,479  | 1,398            |
| Combine EM      | No       | Yes  | Yes    | Yes | Yes     | CISI | 9,814  | 1,460            |
| Open MP         | No       | No   | Yes    | No  | Yes (4) | MED  | 10,673 | 1,033            |
| MPI             | No       | No   | No     | Yes | Yes     | CACM | 12,195 | 3,204            |

#### **Parallelization**

We distribute the computation of the EM algorithm across multiple CPUs using two paradigms: shared or distributed memory.

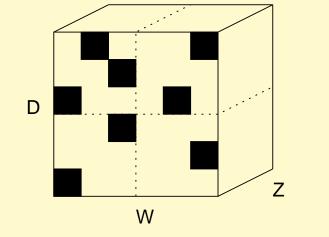
- shared memory uses the cores of a single computer
- distributed memory uses one or more cores on multiple computers within a network

|                 | Shared            | Distributed             |
|-----------------|-------------------|-------------------------|
| Machines        | Single CPU        | Multiple CPU            |
| Network         | N/A               | Possible                |
| Granularity     | Fine (loop-level) | Coarse (function-level) |
| Data structures | Shared            | Explicitly transmitted  |
| Disk access     | Competing         | Separate                |
| Standard        | OpenMP            | MPI                     |
| API             | OpenMP            | Open MPI                |

#### **Related Work**

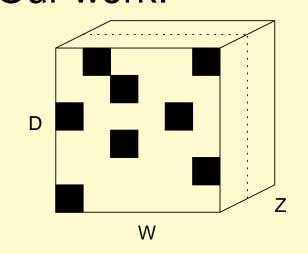
Hong et al. [2008] only considered OpenMP and also:

Hong et al. [2008]:



Our work:

cisi



#### **Future Work**

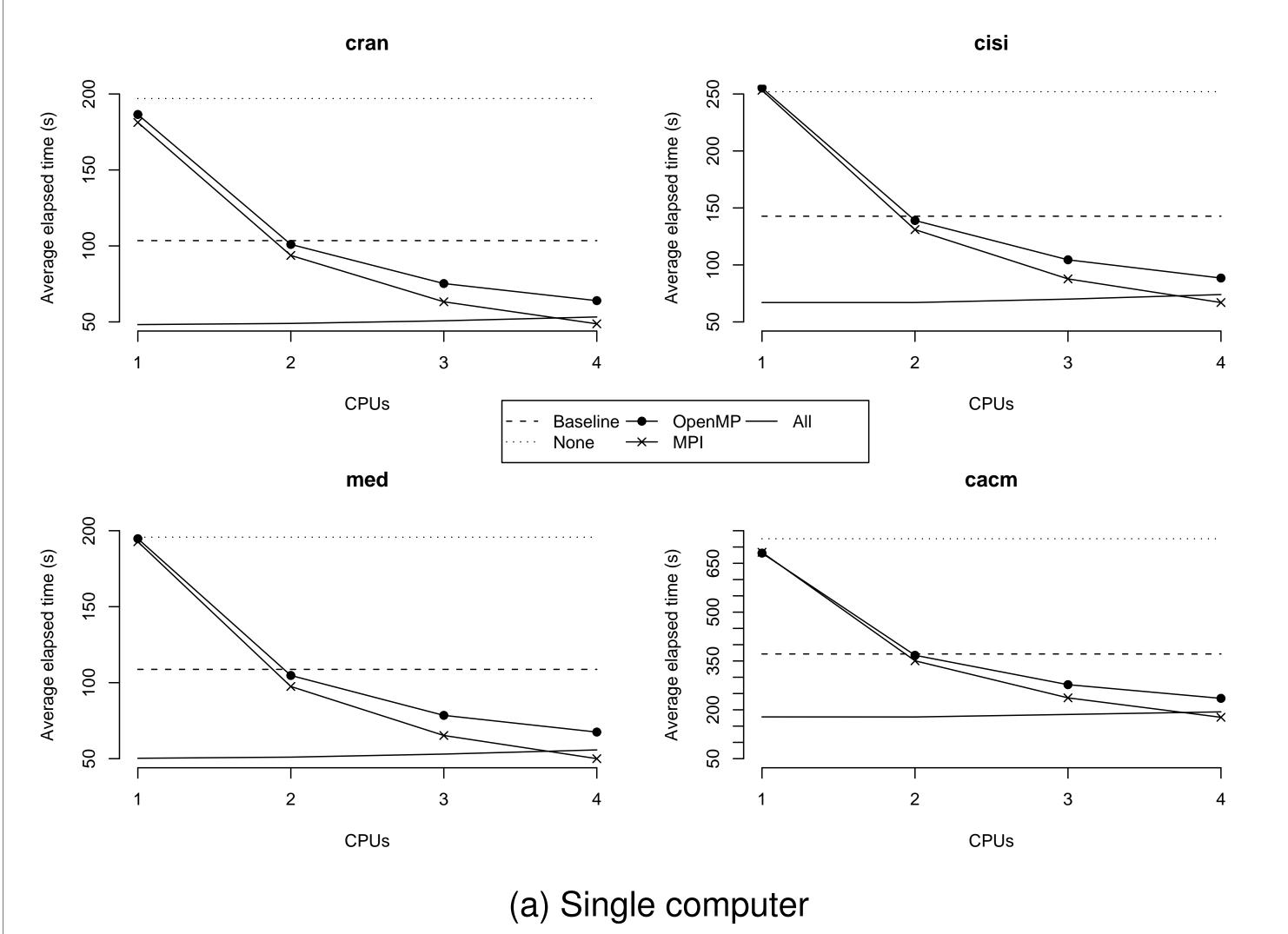
Our next step is to extend our evaluation to larger data sets (ideally, TREC collections) and to combine our work with other existing techniques that will change the output of PLSA (e.g., vocabulary reduction).

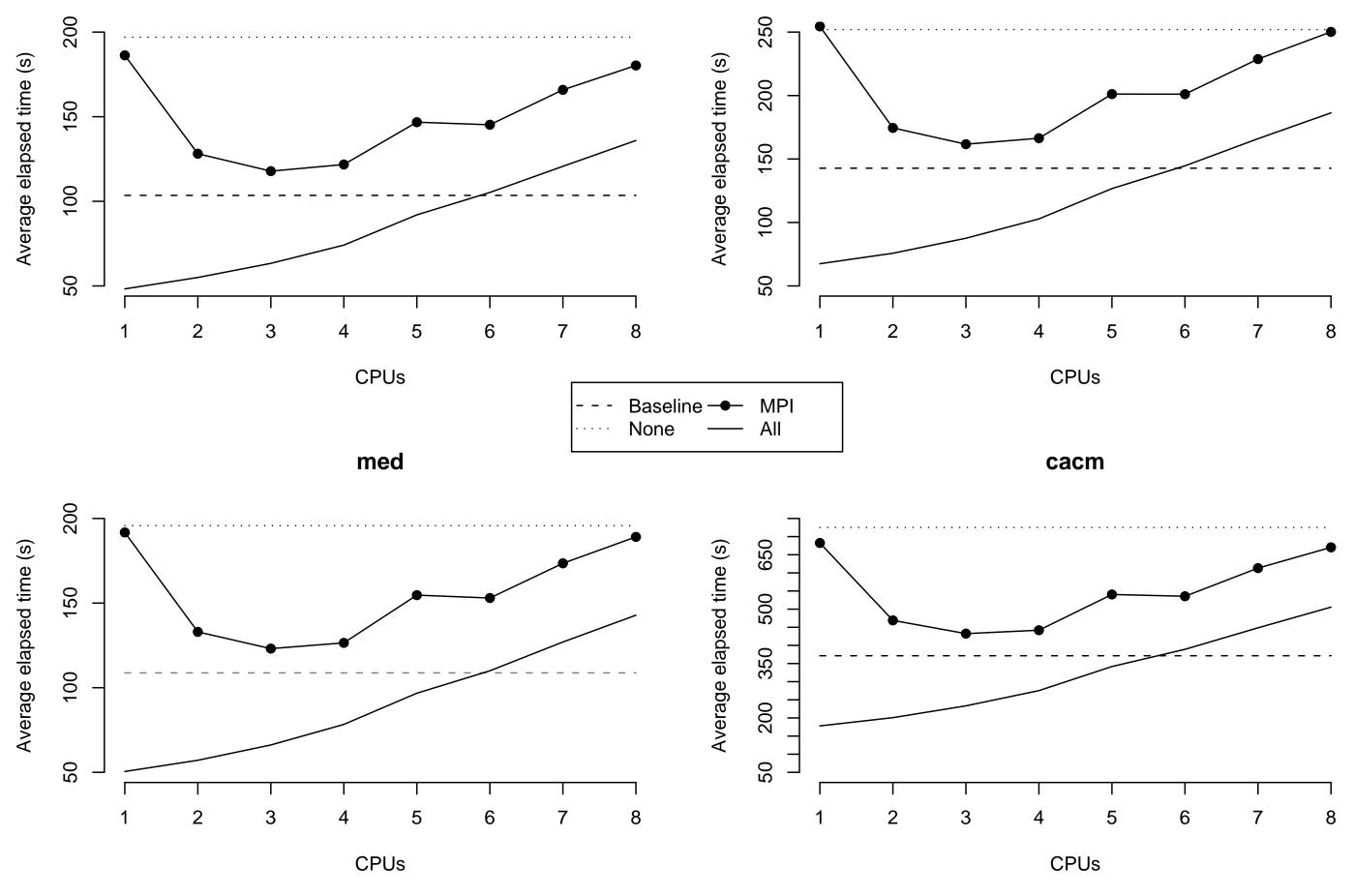
Source code: http://www.cbrc.jp/~rwan/

cran

Results: •Combining E-step and M-step reduces memory usage but increases running time.

•Parallelization decreases running time, with more predictable behavior for executations on a single computer (perhaps due to the network overhead).





(b) Network of 8 computers