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Abstract

This report summarizes the work done at Kyoto University and the University of Melbourne for the
TREC 2006 Genomics Track. The single task for this year was to retrieve passages from a biomedical
document collection. We devised a system made of two parts to deal with this problem. The first part was
an existing IR system based on the vector-space model. The second part was a newly developed proba-
bilistic word-based aspect model for identifying passages within relevant documents (or paragraphs).

1 Introduction

Kyoto University and the University of Melbourne participated together for the TREC 2006 Genomics
Track. The task was to retrieve passages from a full-text HTML collection of biomedical journals. A
“passage” was defined as a sequence of words which do not cross any paragraph boundaries.

We developed a system comprised of two main parts for passage retrieval. The first is an information
retrieval (IR) system which constructs an index for the document collection and returns results according to
given queries. The IR system uses a vector-space model (VSM).

The second part employs a probabilistic word-based aspect model (AM) to score a query against a pas-
sage by including both exact and inexact word matches. The following example exemplifies the motivation
for our work on this part. If word w; occurs often with wo and wo is usually found near ws, then any two
of these words should contribute some positive value to the overall passage score. However, of the three
possible scores, the score of w; and w3 should be the lowest. Thus, we assign a score to two words even if
they do not match exactly but are usually found within the same paragraph. A preliminary “training” phase
is required to derive these scores. In the absence of a separate training set, we used the test collection itself
for this purpose.

These two parts of our system are illustrated in Figure 1 and separated between off-line processing
Figure 1(a) and on-line processing Figure 1(b).

This report is structured as follows. A description of our system is provided in the next section, with
particular emphasis on our use of the aspect model since it is new. Then, in Section 3, we give information on
our three officially submitted runs. Ten additional runs were performed just prior to and after TREC in order
to compare with the submitted results. These runs are reported next in Section 4. Finally, we summarize our
findings in Section 5.
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Figure 1: Our system includes a vector-space model and an aspect model, which are both required for off-
line pre-processing and on-line querying. The purpose of the dashed lines are described later in Section 3.

2 System Description

A description of each part of our system follows. Before beginning with the vector-space model, some
points relevant to the entire system (both the vector-space model and the aspect model) are covered.

2.1 System-wide Features

Since certain biological terms appear in various combinations of mixed upper/lower case and hyphenation,
we applied biological term normalization with other techniques commonly found in information retrieval
systems.

First, we restrict words to contain either alphabetic characters or digits, but not a mix of both. Punc-
tuation characters such as hyphens are considered to be non-word characters by our system. As a result,
both “Nurr-77” and “Nurr77” are separated into the two words “Nurr” and “77”. Furthermore, every part
of our system makes use of case-folding and stemming using the Lovins algorithm [Lovins, 1968]. All of
these transformations are performed on both the query terms and the document collection during both index
creation and querying.

A second feature which we call synonym expansion was applied only to query terms. Synonym expan-
sion combines existing information in the query and several external databases to derive lists of words which
are similar to the query term. Each query was provided as two parts: a gene and a biological function'. First,
if an alternate term is given in parentheses, then it is assumed to be a synonym. For example, the gene for
query #162 was given as “APC (adenomatous polyposis coli)”’. Then, additional synonyms were obtained
by looking up certain on-line databases.

If the term is a gene then it was first expanded using the Biomedical abbreviation server? [Chang et al.,
2002]. The first abbreviation which was an exact match and scored as “Excellent” was returned. In addition,
gene names were also expanded using Entrez Gene [Maglott et al., 2005] from the NCBI web site®. If
multiple candidates were available, the first one was selected. As for biological functions, they were all
expanded using the Medical Subject Headings (MeSH terms) [Nelson et al., 2004], also from the NCBI web
site in the same way.

Since synonym expansion relied on multiple sources, duplicates in the enlarged query were removed.
Synonym expansion can increase the number of words in each query greatly, depending on the query and
the number of synonyms found.

"During the conference, we realized that this extra information was not part of the queries.
http://abbreviation.stanford.edu/
http://www.ncbi.nlm.nih.gov/



2.2 Vector-space Model

The vector-space model (VSM) is employed in the first stage of our retrieval process. The actual version
of VSM used is the impact-based ranking approach. Like in the traditional VSM, the approach represents
a text item (where an item can be a document, a paragraph, or a query) by a vector in n-dimension space,
where n is the number of distinct terms in the collection.

There are, however, some differences between impact ranking and traditional VSM. First, in the impact
ranking approach, all vector coordinates are integers between 1 and 8 (as oppose to floating point values
in traditional VSM). Second, the similarity score between two vectors is now calculated as the inner vector
product, but not as the cosine of the angle between them, as in conventional practice. The motivations behind
these differences as well as the details of the retrieval approach, are described in Anh and Moffat [2005].

2.3 Deriving Scores

The aspect model (also, latent semantic analysis) has been proposed by others to associate words to docu-
ments [Hofmann et al., 1998]. In particular, the aspect model maps words and documents to a k-dimensional
space using the singular value decomposition (SVD) of co-occurrence tables. By selecting k£ such that it is
less than the number of words or documents, we end up with both words and documents being related to
each other through the £ latent states, or clusters. Probabilistic latent semantic analysis (PLSA) [Hofmann,
2001] adds a probabilistic model to earlier work by employing an iterative approach using the Expectation-
Maximization (EM) algorithm [Dempster et al., 1977].

In these earlier works, the starting point was a co-occurrence table of documents against words. If m
denotes the number of documents and n refers to the number of unique words in the collection, then this
implies an m by n matrix. In our work, we modify it so that we have an n by n table. This resembles earlier
work in the field of document clustering [Borko and Bernick, 1962], except that we retain the methodology
employed by Hofmann. So, the score between two different words w, and w, is the sum of their scores
across all k clusters, where k << n:

P(wg, wy) Zp wy|2)p(wy|2)p(2), (D
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In this formula, Z is the set of clusters. The parameters of this aspect model can be estimated using the
EM algorithm by iterating between the following E-step and M-step:
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where W is the set of unique words in the document collection and n(w,,w,) is the number of co-
occurrences of w, and w, within a paragraph across the entire collection. Initial values are generated at
random using a uniform distribution.



The output from the word-based aspect model (AM) is a set of scores p(w,;, w,) such that p(w,, w,) =
p(wy, w,), where w, # w,. For the remainder of this report, we denote these scores as co-occurrence
scores, as opposed to co-occurrence counts (n(wg, wy)). The score of a word with itself was purposely
excluded from our aspect model so that it could be defined as some constant, as explained below.

2.4 Passage Extraction

Since the document collection is in HTML format, HTML “p” tags were used to separate each document into
paragraphs. However, rules were needed to further divide paragraphs into sections. In our implementation,
punctuation marks indicated the boundary between two sections.

Passages were formed from one or more consecutive sections and each was scored against a query
through the pair-wise comparison of words. We denote a passage of s words as ry, ..., s and a query of ¢
words as qi, ..., g;. The score between two words 7; and g; (for 1 <47 < sand 1 < j <) is defined as:

m if r; = g

5
m ifr,-;éqj. ©)

score(r, q;) = {

When two words match exactly, then a constant score of m is contributed to the final score for that
passage. In the case of a non-match, the score for that passage still increases, but by m. If the co-occurrence
scores obtained through the score derivation step of the aspect model is used, then m = p(r;, g;). Thus,
m is constant, while 7 varies depending on the co-occurrence scores of the two words. Several things are
worth noting with respect to Equation (5). As m increases in size compared to p(r;, ¢;) the effectiveness of
the co-occurrence scores diminishes. If 7 = 0, then the score for the passage is essentially a count of the
number of query terms that appear in the passage.

In our experiments, we investigated several values for m and m. For m, we evaluated three values
ranging from m = ppax to m = 1, where ppax is the maximum score across all word-pairs. Based on how
the scores are derived from probabilities, it is obvious that py.x << 1. As for m, we also considered the case
ofm=0.

The formula to score an entire passage r against the query q is:

5w, X (30735 (score(ri, g))) ‘

sXt

score(r,q) = (6)

As Equation (6) shows, we adjusted the scoring mechanism so that the length of the query and the
passage under consideration are taken into account. Moreover, a parameter o, is calculated on a paragraph-
by-paragraph basis as follows:

frequency of w; in paragraph P number of documents
wi = . 1 —log (7
words in paragraph P document frequency of w;
f Paw; < |D ‘ )
_ P (g peg JPLY (8)

Our motivation for this definition of «,,, was to use the passage and query lengths, the word frequency
in the current paragraph, and the IDF factor to affect the scoring mechanism. Furtherwork is necessary in
order to determine the merits of the terms in Equation (8). As a first step, a few additional runs were done
after TREC.



Indexing IR Equation (5) Weight

Run Documents

level synonym m (VSM:PE)
PARAGRAPH  paragraph yes 500 1 % : %
DOCUMENT-1 document yes 1,000 2 X Pmax 0:1
DOCUMENT-2 document no 1,000 2 X Dmax 0:1

Table 1: Submitted runs to TREC.

3 Submissions

Three official runs were submitted to TREC. Ten additional ones were executed prior to and after TREC
which were based on the submitted run which performed the best. Details about these additional runs are
deferred to the next section.

We applied two types of indexing with the vector-space model for the submitted runs: document-level
and paragraph-level indexing. For the document-level, each relevant article is expanded into its constituent
paragraphs, prior to passage extraction. This is indicated as a dashed line in Figure 1(b). The VSM score
attributed to each paragraph is equal to the score of the document from which it is taken. For paragraph-
level indexing, the constituent paragraphs of every article are fed into the VSM for indexing, as shown by
the dashed line in Figure 1(a). The output from the VSM to the passage extraction (PE) system is a set
of relevant paragraphs. Regardless of the indexing level used, the PE system of the aspect model obtains
a set of paragraphs and outputs a list of relevant passages. The score of each passage for final ranking is
determined by combining the score given by the VSM and the PE.

As part of the Genomics Track this year, the collection of 162,259 documents included the set of
12,641,127 legal spans (see Hersh et al. [2006] for further details). A legal span is a section of text which
excludes any HTML “p” tags. Thus, a legal span is equivalent to the paragraphs described above.

Score derivation by the aspect model was fixed so that the same set of scores is used for all of our runs.
The space required by score derivation is O(kn? + kn + k) where n is the number of unique words and k
is the number of clusters. In order to reduce memory requirements, we pre-selected words based on their
document frequency. In the 162,259 documents, there were 1,299,308 unique words using our definition of
a “word” from Section 2.1. By choosing words that appeared in at least 1% of the document collection, the
lexicon size was reduced to 13,895 unique words. Co-occurrence scores were determined using £ = 128
clusters and the EM algorithm iterated until the maximum likelihood did not change by more than 1%. The
maximum score across all word pairs (pmax) was 0.00102.

The maximal number of sections per paragraph was limited to 1,000 due to time constraints. Such para-
graphs were usually found as part of bibliographies in articles due to the higher concentration of punctuation
marks.

The main characteristics that differed between the official runs are given below and summarized in
Table 1.

PARAGRAPH (kyotol) The document collection was indexed at the paragraph-level by the IR system
and the top 500 results (paragraphs) for each query were given to PE. When a query word is equal to
a passage word, m = 1 in Equation (5). Otherwise, m is equal to the co-occurrence scores. Since the
final list of results has 1,000 results per query, multiple passages are selected from a single paragraph.
The ranking of the results is determined by giving equal weight to the vector-space model and the
aspect model.

DOCUMENT-1 (kyoto20) A document-level run using the top 1,000 documents. The paragraphs of every
document in the top 1,000 were considered by the aspect model. When a query word is equal to a



Run Document Passage Aspect
PARAGRAPH 0.2248 0.0248 0.1217
DOCUMENT-1 0.1231 0.0075 0.0610
DOCUMENT-2 0.1297 0.0071  0.0692

Table 2: Mean average precision for the three submitted runs.

Phase Real time User time
Vector-space model
Index construction 25 25
Querying <1 <1
Aspect model
Deriving scores 244 61
Passage extraction 651 632

Table 3: Real and user time (in minutes) for PARAGRAPH with respect to executing the vector-space and
aspect models. The computer architecture used differed between the two models; see the text for further
details.

passage word (a match), a score of m = 2 X pyax was used for Equation (5). Ranking was done using
only the scores provided by the aspect model.

DOCUMENT-2 (kyoto2) Identical to DOCUMENT-1 except that synonyms were expanded only by the
aspect model and not the VSM. This is the only run where the IR system did not make use of synonym
expansion.

The mean average precision results from our submission are shown in Table 2. Of the three submitted
runs, PARAGRAPH performed the best. This led us to believe that document-level indexing does not
perform well for this task and that more granularity is required in the form of paragraph-level indexing.

The running time of PARAGRAPH is given in Table 3 as both real and user time in minutes. Both
“Querying” and “Passage extraction” refer to the time required to process all 28 queries. Two different
architectures were used for our experiments. The VSM was executed on a 3.06 GHz Intel Xeon with 8 GB
RAM, while score derivation and passage extraction were run on a 3.6 GHz Intel Xeon (dual processor)
with 8 GB RAM and 8 MB cache.

Since this use of the aspect model is new and generally untested, its execution time is noticeably high.
It is expected that a more careful implementation can reduce the running time significantly. The difference
between the real and user time for the score derivation phase of the aspect model is due in part to excessive
disk swapping because of its high memory requirements.

4 Additional Runs

The performance of PARAGR APH among our three submitted runs motivated us to concentrate our investi-
gation on this run. In particular, we modified a parameter at a time to help determine which parameters have
a noticeable effect on our system’s performance. Overall, ten additional runs were performed. A description
of each run is given next with respect to PARAGRAPH. In all of these additional runs, paragraph-level
indexing was used with synonym expansion. This information is summarized in Table 4.

PARAGRAPH As our reference run using paragraph-level indexing and synonym expansion, 500 para-
graphs were taken by the PE system. Only paragraphs with 1,000 sections were considered. In



Run Documents Piirsjﬁe T]iquatlon (5% Equation (6) (vaic\fg;)
PARAGRAPH 500 1,000 1 p(ri, q;) Yes 313
AM_1,000 1,000 1,000 1 p(ri,qj) Yes 31
NO_AM_500 500 N/A N/A N/A N/A N/A
NO_AM_1,000 1,000 N/A N/A N/A N/A N/A
NO_SECTION_LIMIT 500 00 1 p(ri, q;) Yes 33
MATCH_PMAX 500 1,000 pmax P10, q5) Yes % g
MATCH_2PMAX 500 1,000 2 X pmax (74, 5) Yes 5 %
NON_MATCH_0 500 1,000 1 0 Yes 1.1
NO_ALPHA 500 1,000 1 p(ri,qj) No % : 2
RANK_WEIGHT_VSM 500 1,000 1 p(ri, q;) Yes 1:0
RANK_WEIGHT_PE 500 1,000 1 p(ri,qj) Yes 0:1

Table 4: Additional runs after the release of relevance judgements. In all cases, paragraph-level indexing
and synonym expansion were employed, just like PARAGRAPH.

Equation (5), m = 1 and @ = p(74, ¢;). Equation (6) was used exactly as shown and equal weight
was given to both the VSM and the PE scores. This information is summarized in the first rows of
Table 1 and Table 4.

AM_1,000 The top 1,000 paragraphs are used by the aspect model.

NO_AM_500 The aspect model was not used. So, each paragraph output through the querying process
became a passage. Since there is one passage for each paragraph, the number of passages returned for
each query is only 500.

NO_AM_1,000 Similar to NO_AM_500, except that 1,000 paragraphs were output.
NO_SECTION_LIMIT There was no limit on the number of sections allowed in a paragraph.
MATCH_PMAX For exact matches, m = ppax = 0.00102.

MATCH_2PMAX For exact matches, m = 2 X ppax.

NON_MATCH_0 When a query term and a passage term does not match, no score is added to the passage
score. That is, 7w = 0.

NO_ALPHA The first term in the numerator of Equation (6) is removed. In other words, ) ; a,,, = 1.
RANK_WEIGHT_VSM The final ranking is determined entirely by the VSM scores.

RANK_WEIGHT_PE The final ranking is determined entirely by the aspect model scores.

The mean average precision results from these runs are given in Table 5. For each type of MAP, our best
score is shown in bold font. As these results show, there was no single run which gave the best results for
all three measures.

These additional runs can be summarized as follows, with respect to our baseline, PARAGRAPH:

e As expected, by increasing the number of paragraphs given to the PE system from 500 to 1,000,
effectiveness improves regardless of whether or not the aspect model is used (see the first four rows
of Table 5).



Run Document Passage Aspect

PARAGRAPH 0.2248 0.0248  0.1217
AM_1,000 0.2369 0.0258  0.1235
NO_AM_500 0.2203 0.0103  0.1232
NO_AM_1,000 0.2372 0.0117  0.1246
NO_SECTION_LIMIT 0.2246 0.0231  0.1204
NON_MATCH_0 0.2231 0.0244 0.1210
MATCH_PMAX 0.1459 0.0083  0.0911
MATCH_2PMAX 0.1558 0.0091  0.0955
NO_ALPHA 0.1497 0.0215 0.0386
RANK_WEIGHT_VSM 0.1744 0.0131 0.0348
RANK_WEIGHT_PE 0.2067 0.0261 0.1081

Table 5: Mean average precision for the ten additional runs.

e Removing the restriction that only paragraphs with 1,000 sections or less are processed does not yield
significant results (NO_SECTION_LIMIT), despite the fact that some results in the gold standard
are found in bibliographies. We believe the reason for this is our system’s inability to properly find
these relevant passages in bibliographies.

e Setting m to 0 reduces the effectiveness of our system slightly for all 3 measures (NON_MATCH_0).
In other words, use of the co-occurrence scores (p(r;,q;j)) improves retrieval. This is encouraging
since it means the word-based aspect model is helpful in ranking documents and locating passages.

e In contrast, reducing m to a value similar to the maximum co-occurrence score is detrimental to all
three measures (MATCH_PMAX and MATCH_2PMAX). Unlike the NON_MATCH_O run where the
difference between m and m increases, in these two runs, the difference decreases. So, we hypothesize
that the difference between m and m should be large, but as NON_MATCH_0 shows, m should not
be 0.

e Omitting the first term of the numerator of Equation (6) reduces all three measures, but passage
retrieval is affected to a lesser degree (NO_ALPHA). Thus, a term which makes use of the IDF
factor and paragraph word frequency is useful. However, this run has not proven that this form of the
equation is ideal.

e Finally, determining the final ranking by either the VSM or PE degrades performance, except when
only the PE system is used. In this case, passage retrieval is the best out of all our runs.

In general, paragraph-level indexing is better than document-level indexing (see Table 2). For paragraph-
level indexing, document retrieval and aspect retrieval were best when no passage extraction mechanism
was employed (NO_AM_1,000). However, to attain better passage retrieval scores over our reference run
(PARAGRAPH), we can simply use the scores from the aspect model (RANK_WEIGHT_PE). An in-
sufficient number of runs were made to extrapolate the effect from combining factors behind the runs. For
example, while it is expected that RANK_WEIGHT_PE can be improved by simply using 1,000 paragraphs
instead of 500, this has not been demonstrated.

S Summary

In this report, we have described our contribution to the TREC 2006 Genomics Track. The main task was
passage retrieval and our solution was a system made of an IR system based on the VSM and a newly



developed word-based aspect model. We initially submitted three runs and then performed ten additional
ones to further evaluate our system. In general, the use of co-occurrence scores gives slight improvements
for all three measures (see the NON_MATCH_0 run in Table 4), which is encouraging.

However, as our system performed within the bottom half of all systems which submitted runs to the
Genomics Track this year, much work is expected. Various parameters and equations need to be further
evaluated and the results in Section 4 is only the beginning. The parameters for the aspect model have not
been thoroughly examined. In particular, while the reduction of the vocabulary to 13,895 words is necessary
due to space limitations, its overall effect is unknown. Moreover, the importance of the number of clusters
(k = 128) has not yet been properly assessed.

More importantly, our system is actually comprised of three parts: an IR system which returns a set
of relevant documents (or paragraphs), an aspect model which derives co-occurrence scores, and a passage
extraction system which locates potential passages and scores them. Problems in even one part of this entire
system could be problematic. For example, even though our work focusses on the coupling of an information
retrieval system with a word-based aspect model, ineffectiveness in the passage extraction system in isolating
passages for scoring could have a significant effect on our system’s performance. All of these aspects need
to be considered as part of our future work.
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